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ABSTRACT

Corners are very useful features for such purposes as
image matching or shape analysis, but corner detection is a
relatively expensive oper&cion. This paper uses filtered x
and y projections, applied to an image containing an object
that has not been explicitly segmented from its background,
to determine possible positions of corners, so that corner
detection can oe applied only in the vicinity of these posi-
tions. Even in cases where the object would be hard to seg-
ment (unimoal histogram), this approach yields a good set
of possible corner positions.
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1. Introduction

Corner points in an image, at which the gradient magnitude

and the rate of change of gradient direction are both high, are

useful features for image matching, because they yield sharp

matches. The corners of objects that have been extracted from

an image are also very useful in shape analysis, e.g., as ver-

tex positions in polygonal approximation. However, corner

points in an image are relatively expensive to detect [1,2],

since they require computing higher-order difference operators

in every position. Corner detection is much less expensive

after an object has been extracted from the image; but it may

be difficult to extract the object cleanly in order to detect

its corners if the image is noisy, e.g., if it has a unimodal

histogram.

-.*.This paper describes a method of using the x and y projections

of an image to detect possible positions in the image where cor-

ners may be present. Corners of significant size should give rise

to slope discontinuities in the projections and a filtering process

(such as those used in image reconstruction) can be used to pro-

duce peaks at these discontinuities. It should be possible to

detect discontinuities due to corners even if the image is noisy,

since the projection process involves ave gig, wicbh,e ews
1v

the effects of noise.
-1" . *

'Each peak on the filtered x(y) project on indicgtqs 4 CQI.uin

(row) of the image in which a corner may b4 present, so that,,

the intersections of these rows and column4 define osiible'cotner
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points. Thus corner detection need be applied only in the

vicinity of these points, which are only a small fraction of

the points in the image. To further reduce the computational

cost, the neighborhoods of the candidate points can be checked

for nonuniformity of gray level before the corner detection

process is applied to them. Candidate points can also be eli-

minated by a nonmaximum suppression process.

Section 2 of this paper describes the method and presents

results for some images of airplanes and an image of a tank.
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2. Method

2.1 Projection, filtering, and peak selection

Given an image f~x,y), its x and y projections are defined

respectively by

p(x) = .f(x,y) and p(y) = Ef(x,y)
, y x

If we regard the image as the sum of an ideal image plus zero-

mean random noise, the projection process reduces the varia-

bility of this noise (relative to the signal level in the pro-

jection). This may be stated more precisely as follows:

Let p(x) = Z f(x,y) and p(y) = E f(x,y) where n is the num-
n nx  YSYx

ber of rows and nx the number of columns. If we regard the

image as the sum of an ideal image f(x,y) plus zero mean random

noise z(x,y), then this may be rewritten as

PX Z (f(x,y) + Z(x,y))
n

y

py = Z (f(x,y) + z(x,y))
nx

In order to compare P x and py with the pixel gray level, we nor-

malize px and py:
-=. _ 1 =1 y +1.n X x fyny x,y) + _LEyz(XY)

"y , y

1 =1 1-"-E f(x,y) + -E z(xy)
n x y nxnx nxnx

Suppose z(x,y) is a random variable with zero mean and variance

a 2 Then the second term can be regarded as a sample of a
2 2

random variable with zero mean and variance a /n (a

I'ooy
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Therefore, the projection process reduces the variability of

this noise [31.

Straight edges in the image do not give rise to discon-

tinuities in the projections unless they are nearly parallel

* to one of the axes. Corners in the image, on the other hand,

do give rise to slope discontinuities. Thus corners are

generally associated with slope changes in the projections,

and can also produce discontinuities if one side of the corner

lies along an axis. These phenomena are illustrated in

Figure 1.

To enhance these (.slope) discontinuities and convert them

into peaks, we can apply a convolution operation to the pro-

jections which acts like a second-difference operator, thus

converting slope changes into changes of magnitude. A simple

example of such an operation is the one-dimensional digital

Laplacian, in which the convolution kernel has value 1 at the
1

origin and value 1 at ±1. Another example is the Shepp-Logan

filter [41, in which the kernel has value approximately 0.2

at ±1. Note that the Laplacian output is 0 when we convolve

it with a linear ramp, whereas the Shepp-Logan filter yields

nonzero output (we use a truncated form of this filter).

Figure 2 shows a 74x128 airplane image to which Gaussian

noise has been added with signal:noise ratio=5:l*. The hinto-

grams of the image is also shown; note that it is quite unimodal.

*s:n is defined here as the ratio between the square of the edge
contrast and the variance of the noise; see [5].



Figure 3 shows the x and y projections of the image, and Figure 4

shows the results of filtering the projections of the image

by convolution with the Shepp-Logan and Laplacian filters,

respectively (a constant has been added to the Laplacian values).

Laplacian filtering was used in our experiments, since the

Shepp-Logan filter preserves the original values to a great

extent, rather than simply responding to changes.

Any peak (=local maximum) on the filtered projection could

indicate the presence of a corner in the image, but in order to

eliminate peaks due to noise, we use only peaks whose heights

are in the top 30% to 50%. The more noisy the image, the

5 smaller the percentage of the peaks that should be accepted.
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2.2 Corner selection

Each peak in the x(y) projection indicates the possible pre-

sence of a corner in that column Crow) of the image. Thus if

we have m(n) peaks on the x(y) projection, we have mn positions

of possible corners in the image, i.e., the positions where the

m columns intersect the n rows, as illustrated in Figure 5.

For the airplane image, this yields 150 positions, as seen in

Figure 6. Note that in Figure 5 the four corners in the image

give rise to four peaks on each projection, and these in turn

yield sixteen possible corner positions. Similarly in Figure 6

we have a grid of possible positions for the corners. Thus we

have to eliminate most of the possible positions by checking

them for the presence of actual corners.

A simple method of eliminating positions at which corners

are not present is to test for uniformity of gray level. We

use a 3x3 window centered at the given position; if the gray

level range r in this window is less than a specified fraction

of the average gray level g in the window, we call the window

uniform. To reduce the effects of noise on the measurement of

the gray level range, we can define the range r as the difference

between (e.g.) the averages of the three highest and three lowest

gray levels in the window, g3max-g3min. Figure 7 shows thei
results of eliminating positions for which r<pg, where p=.8,.7,

and .6. The results are shown superimposed on the non-noisy

* airplane image. For this image, p=.7 seems to be the best choice.



When we use p=.7, the number of candidate corner points is

reduced to 62; and as Figure 7 shows, these points include

many of the major corners on the airplane. Table 1 shows, for

each candidate point, its x and y coordinates, its gradient

magnitude (G), its rate of change of gradient direction ("turn",

T), and the product C=GT, while measures "corner merit".

Figure 8 shows a histogram of the values of C using p=.7.

As might be expected, this histogram has a peak at low values

of C, and if we threshold C to eliminate this peak, we obtain

a selected set of corner points which still includes most of

the airplane corners. Figure 9 shows the results of applying

various thresholds to C; note that these thresholds eliminate

most of the candidate points, including nearly all the can-

didates that lie in the background.

Another way to eliminate extraneous corner points is by

nonmaximum suppression. Figure 10 shows the results of suppressing

nonmaxima of C, using a 7x7 neighborhood (i.e., a point is

suppressed if there is a point within checkerboard distance 3

with a higher value of C), after thresholding at the three levels.

*Figure 11 shows the results of nonmaximum suppression after

thresholding at 500, using 7x7, llxll, and 15x15 neighborhoods,

corresponding to checkerboard distances 3, 5, and 7. Another

possibility is to suppress low values rowwise or columnwise,

rather than in a small neighborhood - e.g., to discard the lowest

value of C in each row (see starred entries in Table 1). Figure 12



shows the results of doing this (without thresholding) and

then suppressing nonmaxima in a 3x3, 7x7, or llxll neighborhood.

All these methods of picking good corner points give us

a mixture of actual airplane corners and noise corners. In a

noisy image, it is not possible to extract the correct set of

corners by local processing alone, even with the aid of projec-

tions, since the noise often weakens real corners while pro-

ducing strong false corners. However, our results have a good

intersection with the set of correct corners, and if we know what

shape we are looking for, we can use point pattern matching

techniques [6,7] to determine that a subset of the correct cor-

ners is present.

Figure 13 shows another airplane example: (a) airport

scene; (b) airplane-window and its projections; (c) possible

corner positions and result of selecting nonuniform positions;

(d) histogram of corner merit values for candidate points;

(e) results of thresholding and of nonmaximum suppression;

(f) results of nonmaximum suppression without thresholding. As

in the first airplane example, good sets of corner points are

obtained using these techniques. Figure 14 shows that similar

results can be obtained without using projections, by applying

the nonuniformity test at every point of the image and threshold-

ing or nonmaximum-suppressing the corner merits; but this is

considerably more expensive (see Section 3); corner merit must be

computed at the hundreds of points that satisfy the nonuniformity

criterion.



Figure 15 shows another example using a noisy infrared

image of a tank. Here the nonuniformity ;riterion (p) is

smaller because the image has lowe- contrast. Our methods

yield less than 20 corners, most of which lie on the border

of the tank.

2.-
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3. Computational cost and concluding remarks

Our method compares quite favorably in computational cost

with performing corner detection at every pixel. If a is

the fraction of rows and columns for which peaks are detected

on the projections, then the fraction of pixels that are can-

2didate corner points is a ; e.g., a=25% implies that only about

6% of the pixels are candidates. Moreover, the uniformity

test, which tends to eliminate a majority of the candidates, is

much cheaper than the corner detection operator; the latter

involves over 50 multiplications, and a similar number of addi-

tions, for each pixel. The overhead of computing and filtering

the projections is not large; computing them costs about 2 adri-

tions per pixel, and filtering costs on the order of the square

root of the number of pixels.

We have seen that corner detection in a noisy image is not

a very reliable process. Using projections, however, in which

the averaging helps to combat the effects of the noise, we can

eliminate most of the non-corner points without losing more

than a fraction of the corner points. We can further reduce

the set of candidate points by applying simple tests for gray

level nonuniformity. When we apply corner detection to the

remaining candidates, and use thresholding, nonmaximum suppression,

or both, we obtain a set of corners comparable to the set that

could be obtained by applying corner detection in the image, and

at much lower computational cost.
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U. .

X Y T G C

32 10 302 6.7 2023
37 10 -44 18.8 827 *
10 13 -58 12.1 701 *

37 13 206 7.9 1627
10 27 56 14.9 834 *
37 27 -250 4.3 1075
37 29 -326 2.3 749
34 35 21 12.9 270
37 35 -22 8.6 189
32 42 124 17.8 2207
34 42 28 4.9 137 *
37 42 -28 12.6 352

- 32 49 -1072 1.2 1286
34 49 -98 7.8 764
37 49 -108 2.0 216 *
42 49 -207 3. 8 7e6
51 49 -198 2.3 455
22 60 -77 14.2 1093
32 60 -109 15.3 1667
34 60 -360 1.4 504 *
37 60 -120 6.9 828
42 60 -242 5.0 1210
51 60 40 18.5 740
17 66 38 17.5 665
22 66 50 11.0 550
32 66 -21 4.3 90 *
34 66 -296 3.7 1095
37 66 -318 6.3 2003
42 66 -92 8.4 772
51 66 146 4.9 715

Table 1. Corner merits for the candidate corner points shown
in Figure 7 (middle: p=.7). X,Y are the coordinates
of the point, T is the rate of change of gradient
direction, G is the gradient magnitude, and C=GT.



10 79 -162 10.9 1765
22 79 35 14.2 497
32 79 22 5.8 127
34 79 250 6. 1 1525
37 79 236 8. 6 2029
42 79 64 6.9 441
51 79 19 9.3 176
60 79 -105 11.1 1165
62 79 221 9.5 2099
10 84 -37 19.2 710
17 84 24 8.5 204 *

32 84 298 2.1 625
34 84 68 6.9 469
37 84 32 9.9 316
42 84 71 11.0 781
51 84 -46 10.2 469
60 84 -2654 .2 530
62 84 -129 8.9 1148
32 91 -131 20.5 2685
34 91 -37 13.1 484
37 91 5 4.5 22
32 103 -2428 .6 1456
34 103 -71 7.1 504
37 103 -524 3.3 1729
42 103 -29 12.5 362

22 116 -301 6.8 2046
42 116 271 8.4 2276

51 116 -50 13.7 685

60 116 -8 4.6 404 *

22 122 -259 3.5 906

51 122 -69 12.3 848

62 122 47 16.2 761
999

Table 1, cont'd.
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Figure 1. Simple examples of projections; the
object has nonzero gray level, the background
has level zero.
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Figure 1, cont'd.
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